3-4. 基底與維度

Define Basis and Dimension

VV: vector space over FF, SVS \subseteq V, 滿足

  • SS 生成 VV: spanspan(SS) = VV

    目的,保證存在性

  • SSLI

    手段,保證唯一性

則稱 SSVV 之一組基底(basis),且稱 SS 的向量個數為 VV維度(dimension),記作 dim(VV)

The basis of a vector space is a set of linearly independent vectors that span the full space.

  • 基底個數未必唯一,但維度必唯一

Standard Basis of Each Vector Spaces

  • VV = FnF^n, β\beta = { e1\vec{e_1} = (11, 00, ..., 00), e2\vec{e_2} = (00, 11, ..., 00), ..., en\vec{e_n} = (00, 00, ..., 11) } \Rightarrow dim(FnF^n) = nn

  • VV = Fm×nF^{m \times n}, β\beta = { EijE_{ij} | 1im1 \le i \le m, 1jn1 \le j \le n } \Rightarrow dim(Fm×nF^{m \times n}) = mnmn

  • VV = PP, β\beta = { 11, xx, x2x^2, ... } \Rightarrow dim(PP) = \infty

    無限維向量空間(infinite-dimensional vector space)

  • VV = PnP^n, β\beta = { 11, xx, x2x^2, ..., xnx^n } \Rightarrow dim(PnP^n) = nn + 11

  • VV = FF, β\beta = { 11 } \Rightarrow dim(FF) = 11

  • VV = { 0\vec{0} }, β\beta = \emptyset \Rightarrow dim({ 0\vec{0} }) = 00

    唯一一個維度零的向量空間

Theorem of Basis

VV: vector space over FF, β\beta = { v1\vec{v_1}, v2\vec{v_2}, ..., vn\vec{v_n} } 為 VV 之一組 basis vV\Leftrightarrow \forall \vec{v} \in V, v\vec{v}唯一寫成 β\beta 中向量之 LC

生成裁減定理

VV: vector space over FF, SS 生成 VV, 若 SS 不為 LI, 則 uS\exists \vec{u} \in S s.t. SS - { u\vec{u} } 仍生成 VV

獨立擴增定理

VV: vector space over FF, SSLI, 若 SS 不生成 VV, 則 uspan\exists \vec{u} \notin span(SS) (or S\notin S) s.t. SS \cup { u\vec{u} } 仍為 LI

Properties of Basis and Dimension with Span and LI

  • SS 生成 VVSS'LI SS\Rightarrow |S'| \le |S|

  • 基底最小生成集(minimal spanning set)最大獨立集(maximal linearly independent set)

  • dim(VV) = nn,

    • SS 生成 VSnV \Rightarrow |S| \ge n, S<nS|S| < n \Rightarrow S 不生成 VV

      SnS|S| \ge n \nRightarrow S 生成 VV

    • SSLI VSnV \Rightarrow |S| \le n, S>nS|S| > n \Rightarrow SLD

      SnS|S| \le n \nRightarrow SLI

  • dim(VV) = nn = S|S|, SS 生成 VV SSLI S\Rightarrow SVV 之一組 basis

spanning sets

basis \rightarrow

—————\text{---------------}

LI sets

Last updated

Was this helpful?