3-3. 生成與線性獨立

Define Linear Combination

VV 為一佈於 FF 的向量空間, SVS \subseteq V, SS 中任意有限個向量 v1\vec{v_1}, ..., vk\vec{v_k}, FF 中任意有限個純量 α1\alpha_1, ..., αk\alpha_k, 稱 v\vec{v} = α1v1\alpha_1 \vec{v_1} + ... + αkvk\alpha_k \vec{v_k}SS 之一線性組合(linear combination, LC)

Theorem of 行向量線性組合關係式

AA, BFm×nB \in F^{m \times n}, AA 列等價BB, 則 AABB 之行向量線性組合關係式相同

A\because A 列等價BkerB \Rightarrow ker(AA) = kerker(BB) ex.A=[123413401455]^{ex.} A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 0 \\ 1 & 4 & 5 & 5 \end{bmatrix} 列運算至 rref U=[101001100001]U = \begin{bmatrix} \color{red}{1} & 0 & 1 & 0 \\ 0 & \color{red}{1} & 1 & 0 \\ 0 & 0 & 0 & \color{red}{1} \end{bmatrix}, 其中 UU 的每個非 pivot 行皆可寫成 pivot 行(column \downarrow with 1\color{red}{1})的 LC

Define Span and Spanning Set

VV 為一佈於 FF 的向量空間, SVS \subseteq V, spanspan(SS) = { v\vec{v} | v\vec{v}SS 的一組 LC }, 稱為 SS生成空間(span); 若 spanspan(SS) = VV, 則稱 SS 生成 VV(SS spans VV)或 SSVV生成集(spanning set)

ex.R2^{ex.} R^2:

  • spanspan{(11, 00)} = { xx(11, 00) | xRx \in R } = { (xx, 00) | xRx \in R } = xx

  • spanspan{(00, 11)} = { yy(00, 11) | yRy \in R } = { (00, yy) | yRy \in R } = yy

  • spanspan{(11, 00), (00, 11)} = { xx(11, 00) + yy(00, 11) | xx, yRy \in R } = { (xx, yy) | xx, yRy \in R } = R2R^2

span\rightarrow span(SS): set of all LC in SS

Properties of Span

  • spanspan(\emptyset) = { 0\vec{0} }; spanspan({ 0\vec{0} }) = { 0\vec{0} } as well

  • AFm×nA \in F^{m \times n}:

    • CSCS(AA) = spanspan{ a1\vec{a_1}, ..., an\vec{a_n} }, ax\vec{a_x}: AA 的行向量

    • RSRS(AA) = spanspan{ A1A_1, ..., AmA_m }, AxA_x: AA 的列向量

  • spanspan(SS) 為 VV 的子空間

    span\because span(SS) 補齊 SS 之封閉性

  • spanspan(SS) 為包含 SS 之最小子空間 \Rightarrow 所有包含 SS 的子空間之交集

  • SS is a subspace of VspanV \Leftrightarrow span(SS) = SS

  • S1S2spanS_1 \subseteq S_2 \Rightarrow span(S1S_1) span\subseteq span(S2S_2)

    but \nLeftarrow: ex.S1^{ex.} S_1 = {(11, 00)} S2\nsubseteq S_2 = {(22, 00), (00, 11)} span\Rightarrow span(S1S_1) = xxspan\subseteq span(S2S_2) = R2R^2

  • spanspan(S1S2S_1 \cap S_2) span\subseteq span(S1S_1) \cap spanspan(S2S_2)

  • spanspan(S1S2S_1 \cup S_2) span\supseteq span(S1S_1) \cup spanspan(S2S_2)

Theorem of Sum of Spans

VV 為一佈於 FF 的向量空間, S1S_1, S2VS_2 \subseteq V, 若 W1W_1 = spanspan(S1S_1), W2W_2 = spanspan(S2S_2), 則 W1W_1 + W2W_2 = spanspan(S1S2S_1 \cup S_2)

ex.S1^{ex.} S_1 = {(11, 00)} W1\Rightarrow W_1 = spanspan{(11, 00)} = xx軸; S2S_2 = {(00, 11)} W2\Rightarrow W_2 = spanspan{(00, 11)} = yyW1\Rightarrow W_1 + W2W_2 = spanspan{(11, 00), (00, 11)} = R2R^2

Corollary of Sum of Spans

VV 為一佈於 FF 的向量空間, i\forall i = 11, ..., kk, SiVS_i \subseteq V, 若 WiW_i = spanspan(SiS_i), 則 i=1kWi\displaystyle\sum_{i=1}^k W_i = spanspan(S1...SkS_1 \cup ... \cup S_k)

Define Linear Dependent and Independent Sets

VV 為一佈於 FF 的向量空間, SVS \subseteq V, \exists 有限個 viS\vec{v_i} \subseteq S, ii = 11, ..., kk

  • SS線性相依集(linear dependent set, LD) \Leftrightarrow \exists 有限個全為 00ciFc_i \subseteq F s.t. c1v1c_1 \vec{v_1} + ... + ckvkc_k \vec{v_k} = 0\vec{0}

    viS\exists \vec{v_i} \in S s.t. 該 vi\vec{v_i} 可寫成其他 S\in S 的向量之 LC

  • SS線性獨立集(linear independent set, LI) \Leftrightarrow c1v1c_1 \vec{v_1} + ... + ckvkc_k \vec{v_k} = 0c1\vec{0} \Rightarrow c_1 = c2c_2 = ... = ckc_k = 00

    viS\forall \vec{v_i} \in S 皆無法寫成其他 S\in S 的向量之 LC

Properties of LD and LI

  • S1S2S_1 \subseteq S_2,

    • S2S_2: LI S1\Rightarrow S_1: LI

      S2S_2: LI S1\nLeftarrow S_1: LI

    • S1S_1: LD S2\Rightarrow S_2: LD

  • 0SS\vec{0} \in S \Rightarrow S: LD

    c0\because c \vec{0} = 0\vec{0}, cFc \in F

  • v0\vec{v} \ne \vec{0} \Rightarrow { v\vec{v} }: LI

    cv\because c \vec{v} = 0c\vec{0} \Rightarrow c = 00

  • \emptyset: LI

  • { u\vec{u}, v\vec{v} }: LD u\Leftrightarrow \vec{u} = cvc \vec{v}, or v\vec{v} = cuc \vec{u}, cFc \in F

Wronskian

f1f_1, f2f_2, ..., fnC(n1)f_n \in C^{(n-1)}[aa, bb]: 在 [aa, bb] 上的 n1n - 1 次可微分函數所成的集合(即函數向量空間) 定義 WW(xx) = f1(x)f2(x)fn(x)f1(x)f2(x)fn(x)f1(n1)(x)f2(n1)(x)fn(n1)(x)\begin{vmatrix} f_1(x) & f_2(x) & \ldots & f_n(x) \\ f_1'(x) & f_2'(x) & \ldots & f_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \ldots & f_n^{(n-1)}(x) \end{vmatrix} 稱為 f1f_1, f2f_2, ..., fnf_nWronskian

ex.f1^{ex.} f_1(xx) = 2x22x^2, f2f_2(xx) = 3x33x^3, WW(xx) = 2x23x34x9x\begin{vmatrix} 2x^2 & 3x^3 \\ 4x & 9x \end{vmatrix} = 6x46x^4

Theorem of Wronskian

f1f_1, f2f_2, ..., fnC(n1)f_n \in C^{(n-1)}[aa, bb], x0\exists x_0 \in[aa, bb] s.t. WW(x0x_0) 0f1\ne 0 \Rightarrow f_1, f2f_2, ..., fnf_n: LI

\rightarrowWW(xx) = 00, 未必保證 f1f_1, f2f_2, ..., fnf_n: LD

ex.f1^{ex.} f_1(xx) = x2x^2, f2f_2(xx) = xxx|x| on [1-1, 11] W\Rightarrow W(xx) = x2xx2x2x\begin{vmatrix} x^2 & x|x| \\ 2x & 2|x| \end{vmatrix} = 00 但假設 c1x2c_1 x^2 + c2xxc_2 x|x| = 00 {c1+c2=0,if x=1c1c2=0,if x=1c1\begin{cases} c_1 + c_2 = 0, & \text{if } x = 1 \\ c_1 - c_2 = 0, & \text{if } x = -1 \end{cases} \Rightarrow c_1 = c2c_2 = 00, f1f_1, f2f_2: LI \rightarrow 若定義域改成[00, 11], 則 f1f_1, f2f_2: LD

Last updated

Was this helpful?