3-4. 排容原理

Principle of Inclusion and Exclusion (PIE)

UU: universal set, a1a_1, a2a_2, ..., ana_n: 性質, AiA_i = { xUx \in U | xx 滿足 aia_i }, NN(aia_i) = Ai|A_i|, NN(aiˉ\bar{a_i}) = Aiˉ|\bar{A_i}| N\Rightarrow N(aiˉajˉ\bar{a_i} \bar{a_j}) = AiˉAjˉ|\bar{A_i} \cap \bar{A_j}| = U|U| - [NN(aia_i) + NN(aja_j)] + NN(aiaja_i \cap a_j) N\Rightarrow N(aiˉajˉakˉ\bar{a_i} \bar{a_j} \bar{a_k}) = AiˉAjˉAkˉ|\bar{A_i} \cap \bar{A_j} \cap \bar{A_k}| = U|U| - [NN(aia_i) + NN(aja_j) + NN(aka_k)] + [NN(aiaja_i \cap a_j) + NN(aiaka_i \cap a_k) + NN(ajaka_j \cap a_k)] - NN(aiajaka_i a_j a_k) \Rightarrow \quad \vdots N\Rightarrow N(a1ˉa2ˉ\bar{a_1} \bar{a_2} ... akˉ\bar{a_k}) = U\color{red}{|U|} - i=1nN(ai)\color{orange}{\displaystyle\sum_{i=1}^n N(a_i)} + 1i<jnN(aiaj)\color{green}{\displaystyle\sum_{1 \le i < j \le n} N(a_i a_j)} - 1i<j<knN(aiajak)\color{blue}{\displaystyle\sum_{1 \le i < j < k \le n} N(a_i a_j a_k)} + ... + (1)nN(a1a2...an)\color{purple}{(-1)^n N(a_1 a_2 ... a_n)} = S0\color{red}{S_0} - S1\color{orange}{S_1} + S2\color{green}{S_2} - S3\color{blue}{S_3} + ... + (1)nSn\color{purple}{(-1)^n S_n}, 其中 SrS_r(nr)\dbinom{n}{r} 項之和

排容原理文氏圖,只看 UU當下性質

Euler's Totient Function

nZ+n \in Z^+, nn = P1e1P2e2...PkekP^{e_1}_1 P^{e_2}_2 ... P^{e_k}_knn質因數分解,則 ϕ\phi(nn) = nn(11 - 1P1\dfrac{1}{P_1})(11 - 1P2\dfrac{1}{P_2})...(11 - 1Pk\dfrac{1}{P_k})

proof: kk = 33

UU = { 11, 22, ..., nn }, 令 aia_iPiP_i 之倍數, ii = 11, 22, 33, ϕ\phi(nn) = NN(a1ˉa2ˉa3ˉ\bar{a_1} \bar{a_2} \bar{a_3}) = S0S_0 - S1S_1 + S2S_2 - S3S_3 = nn - [nP1\dfrac{n}{P_1} + nP2\dfrac{n}{P_2} + nP3\dfrac{n}{P_3}] + [nP1P2\dfrac{n}{P_1 P_2} + nP1P3\dfrac{n}{P_1 P_3} + nP2P3\dfrac{n}{P_2 P_3}] - nP1P2P3\dfrac{n}{P_1 P_2 P_3} = nn[11 - (1P1\dfrac{1}{P_1} + 1P2\dfrac{1}{P_2} + 1P3\dfrac{1}{P_3}) + (1P1P2\dfrac{1}{P_1 P_2} + 1P1P3\dfrac{1}{P_1 P_3} + 1P2P3\dfrac{1}{P_2 P_3}) - 1P1P2P3\dfrac{1}{P_1 P_2 P_3}] = nP1P2P3\dfrac{n}{P_1 P_2 P_3}[P1P2P3P_1 P_2 P_3 - (P1P2P_1 P_2 + P1P3P_1 P_3 + P2P3P_2 P_3) + (P1P_1 + P2P_2 + P3P_3) - 11] = nP1P2P3\dfrac{n}{P_1 P_2 P_3}(P1P_1 - 11)(P2P_2 - 11)(P3P_3 - 11) = nn(P11P1\dfrac{P_1 - 1}{P_1})(P21P2\dfrac{P_2 - 1}{P_2})(P31P3\dfrac{P_3 - 1}{P_3}) = nn(11 - 1P1\dfrac{1}{P_1})(11 - 1P2\dfrac{1}{P_2})(11 - 1P3\dfrac{1}{P_3})

Theorem of Onto Function Amount

AA, BB: sets, A|A| = m, B|B| = n, mnm \ge n, 則 ff: ABA \rightarrow B onto 個數: ontoonto(mm, nn) = i=0n\displaystyle\sum_{i=0}^n(1-1)i(ni)^i \dbinom{n}{i}(nn - ii)m^m

mm 個相異球放入 nn相異箱子,不允許空箱之方法數

proof:

UU = { ff | ff: ABA \rightarrow B } U\Rightarrow |U| = nmn^m, 令 aia_i 表示 UU 中函數滿足值域不含 bib_i 之條件(ii 個箱子為空), ii = 11, ..., nn onto\Rightarrow onto(mm, nn) = NN(a1ˉa2ˉ\bar{a_1} \bar{a_2} ... anˉ\bar{a_n}) = S0S_0 - S1S_1 + S2S_2 - S3S_3 + ... + (1-1)nSn^n S_n = (n0)nm{\color{red}{\dbinom{n}{0}}} n^m - (n1)\dbinom{n}{1}(nn - 11)m^m + (n2)\dbinom{n}{2}(nn - 22)m^m - (n3)\dbinom{n}{3}(nn - 33)m^m + ... + (1-1)n(nn)^n \dbinom{n}{n}(nn - nn)m^m = i=0n\displaystyle\sum_{i=0}^n(1-1)i(ni)^i \dbinom{n}{i}(nn - ii)m^m

(1-1)n(nn)^n \dbinom{n}{n}(nn - nn)m^m = 00

Stirling Number of The Second Kind

mm, nZn \in Z, m>n>1m \gt n \gt 1 SS(mm, nn) = onto(m,n)n!\dfrac{onto(m, n)}{n!} = i=0n(1)i(ni)(ni)mn!\dfrac{\displaystyle\sum_{i=0}^n (-1)^i \dbinom{n}{i} (n - i)^m}{n!} 稱為第二種 Stirling 數(Stirling number of the second kind)

  • mm < nn 時,SS(mm, nn) = 00

mm 個相異球放入 nn相同箱子,不允許空箱之方法數

m\rightarrow m 個相異球放入 nn相同箱子,允許空箱之方法數?

SS(mm, nn) + SS(mm, nn - 11) + ... + SS(mm, 11)

  • SS(mm, nn): 00 個空箱

  • SS(mm, nn - 11): 11 個空箱

    ...

  • SS(mm, 11): nn - 11 個空箱

Theorem of S(m, n)

mm, nNn \in N, m>n>2m \gt n \gt 2, SS(mm + 11, nn) = SS(mm, nn - 11) + nSn S(mm, nn)

proof:

SS(mm + 11, nn): mm + 11 相異物分成恰 nn 箱,固定一物 AA 1. AA 所在的箱子只有 AA: SS(mm, nn - 11) 2. AA 所在的箱子不只有 AA: nSn S(mm, nn) \rightarrow 先放AA 之外的 mm 個相異物入 nn,再從其中任一箱放入 AA

Table of S(m, n)

nm\dfrac{n \rightarrow}{m \downarrow}

1

2

3

4

5

6

1

1

2

1

1

3

1

3

1

4

1

7

6

1

5

1

15

25

10

1

6

1

31

90

65

15

1

ExampleExample: \quad ontoonto(66, 33) + ontoonto(66, 33) = ? solutionsolution: \quad 9090(3!3!) + 6565(4!4!)

Last updated

Was this helpful?