3-3. 組合

Combination Formula

  • nn相異不允許重複rr組合的方法數: Crn\text{C}^n_r = C\text{C}(nn, rr) = (nr)\dbinom{n}{r} = n(n1)...(nr+1)r!\dfrac{ n(n - 1)...(n - r + 1)}{r!} = n!(nr)!r!\dfrac{n!}{(n - r)!r!}, nrn \ge r

    \because 組合 = 無次序排列 = Prnr!\dfrac{\text{P}^n_r}{r!}

  • nn相異允許重複rr組合的方法數: (n+r1r)\dbinom{n + r - 1}{r} = (n+r1)!r!(n1)!\dfrac{(n + r - 1)!}{r!(n - 1)!}

    ex.^{ex.} 4 件相異物 A, B, C, D 無次序取 7 件作組合:

A

B

C

D

AABBCCD

xxxx

xxxx

xxxx

xx

AACCCCD

xxxx

xxxxxxxx

xx

\rightarrow 等同於: rrxxnn - 11 個間隔不全相異物排列,其等價問題: 1. rr 個相同球放入 nn 個相異箱子允許空箱之方法數 2. x1x_1 + x2x_2 + ... + xnx_n = rr非負整數整數解個數

\rightarrow Corollary: n\color{red}{n} 個箱內必有物 (n+(rn)1rn)\Rightarrow \dbinom{n + (r {\color{red}{- n}}) - 1}{r {\color{red}{- n}}} = (r1rn)\dbinom{r - 1}{r - n} = (r1n1)\dbinom{r - 1}{n - 1} 1. rr 個相同球放入 nn 個相異箱子不允許空箱之方法數 2. x1x_1 + x2x_2 + ... + xnx_n = rr整數整數解個數

ExampleExample: \quad x1x_1 + x2x_2 + ... + xnrx_n \le r 之非負或正整數整數解個數? solutionsolution: \quadxn+1x_{n + 1} = rr - (x1x_1 + x2x_2 + ... + xnx_n) x1\Rightarrow x_1 + x2x_2 + ... + xnx_n + xn+1x_{n + 1} = rr, xn+1x_{n + 1} \ge (正整數: >>) 00, 其中 xn+1x_{n + 1} 稱為鬆弛變數 (slack variable)

Theorem of Combination

(nr)\dbinom{n}{r} = (n1r)\dbinom{n - 1}{r} + (r1rn)\dbinom{r - 1}{r - n}

proof:

利用組合證法,nn 個相異物取 rr 個組合,固定一物 AA

  • 不取 AA: (n1r)\dbinom{n - 1}{r}

  • 取到 AA: (n1r1)\dbinom{n - 1}{r - 1}

\because「沒取到 AA 」與「有取到 AA」為互斥事件 (nr)\therefore \dbinom{n}{r} = (n1r)\dbinom{n - 1}{r} + (r1rn)\dbinom{r - 1}{r - n}

Corollary of Combination

(nr)\dbinom{n}{r} = (n2r2)\dbinom{n - 2}{r - 2} + 2(n2r1)2 \dbinom{n - 2}{r - 1} + (n2r)\dbinom{n - 2}{r}

固定一物 AABB

  • 取到 AABB: (n2r2)\dbinom{n - 2}{r - 2}

  • 不取 AABB: (n2r1)\dbinom{n - 2}{r - 1}

  • 不取 AABB: (n2r)\dbinom{n - 2}{r}

Vandermonde's Convolution

(r+sn)\dbinom{r + s}{n} = (r0)(sn)\dbinom{r}{0} \dbinom{s}{n} + (r1)(sn1)\dbinom{r}{1} \dbinom{s}{n - 1} + ... + (rn)(s0)\dbinom{r}{n} \dbinom{s}{0} = k=0n(rk)(snk)\displaystyle\sum_{k=0}^{n} \dbinom{r}{k} \dbinom{s}{n - k}

r\Rightarrow r = ss = nn 代入: (2nn)\dbinom{2n}{n} = (n0)2\dbinom{n}{0}^2 + (n1)2\dbinom{n}{1}^2 + ... + (nn)2\dbinom{n}{n}^2 = k=0n(nk)2\displaystyle\sum_{k=0}^{n} \dbinom{n}{k}^2

Binomial Theorem

(xx + yy)n^n = k=0n(nr)xrynr\displaystyle\sum_{k=0}^{n} \dbinom{n}{r} x^r y^{n - r}, nZ+n \in Z^+

proof:

(xx + yy)n^n 展開後 xrynrx^r y^{n - r} 之係數 (nr)\dbinom{n}{r} 相當於「 nn 個 bits 中恰含 rr 個 1 與 nn - rr 個 0 之 bit string 個數」

Corollary of Binomial Theorem

(x1x_1 + x2x_2 + ... + xkx_k)n^n = n=i=1knk,0nink(nn1,n2,...,nk)x1n1x2n2\displaystyle\sum_{\tiny{n = \displaystyle\sum_{i=1}^{k} n_k, \; 0 \le n_i \le n_k}} \dbinom{n}{n_1, n_2, ..., n_k} {x_1}^{n_1} {x_2}^{n_2} ... xkn2{x_k}^{n_2}, nZ+n \in Z^+

Last updated

Was this helpful?