Define Linear Mapping
V, V′: vector spaces over F, T: V→V′ 為一 function 滿足
∀u, v∈V, T(u + v) = T(u) + T(v)
∀c∈F, ∀v∈V, T(cv) = cT(v)
則稱 T 為 V 至 V′ 之一線性轉換(linear transformation)或線性映射(linear mapping),或簡稱 T 為線性(linear)
Properties of Linear Mapping
T: V→V linear, 稱 T 為一線性算子(linear operator)
T: V→F linear, 稱 T 為一線性泛涵(linear functional)
ex. trace of matrix is a linear functional.
IV: V→V, IV(v) = v, ∀v∈V, 稱為 V 上的單位映射函數(identity mapping)
T0: V→V′, T0(v) = 0, ∀v∈V, 稱為零映射函數(zero mapping), 記作 O
T: V→V′ linear ⇔∀c, d∈F, ∀u, v∈V, T(cu + dv) = T(cu) + T(dv)
T: V→V′ linear ⇒ 1. T(0) = 0
by T(cv) = cT(v), c = 0 2. T(−v) = −T(v)
by T(cv) = cT(v), c = −1 3. ∀u, v∈V, T(u - v) = T(u) - T(v)
Theorem of Basis with Linear Mapping
V, V′: vector spaces over F, β = { v1, ..., vn } 為 V 之一 basis, w1, ..., wn∈V′, 則 ∃ 唯一 T: V→V′ linear s.t. T(v1) = w1, ..., T(vn) = wn
當一個線性映射對某一組基底的對應決定後,則整個線性映射便唯一決定
若 T: Fn→Fm linear, 則 ∃ 唯一 A∈Fm×n s.t. T(x) = Ax, ∀x∈Fn, 其中 A = [ T(e1) T(e1) ... T(en) ] 又可稱為 T 之標準矩陣(standard matrix)