6-1. 圖的種類及術語

Define Directed and Undirected Graph

VV \ne \emptyset (VV: vertices set/nodes set), EV×VE \subseteq V \times V(EE: edges set) =

  • { (aa, bb) | aa, bVb \in V }, 稱 GG = (VV, EE) 為一個 有向圖(directed graph/digraph)

    其中 (aa, bb) E\in E 為一個有序對(ordered pair), 表示一個有向邊(directed edge)

    • aa: 起點(origin/source/initial vertex)

    • bb: 終點(terminal node/terminus)

  • { { aa, bb } | aa, bVb \in V }, 稱 GG = (VV, EE) 為一個 無向圖(undirected graph)

    其中 { aa, bb } = { bb, aa } E\in E 為一個無序對(unordered pair), 表示一個無向邊(undirected edge)

    • 無向圖視為一有向圖時: { aa, bb } = { (aa, bb), (bb, aa) }

Pseudograph Underlying G

有向圖 GG 視為一無向圖時,此無向圖稱為GG 為基礎的虛擬圖(pseudograph underlying GG)

Loop and Isolated Vertex

  • 迴圈(loop): 一個邊起點與終點相同

    • 有向圖: (aa, aa)

    • 無向圖: { aa, aa }

  • 孤立點(isolated vertex): 一個點不為任何邊的起點

Define Simple Graph and Multigraph

GG = (VV, EE): graph, 重數(multiplicity): 兩點之間的邊數, 若 GG 中任兩點間

  • 至多一邊相連: multiplicity 1\le 1,稱 GG簡單圖(simple graph)線性圖(linear graph)

    至多一邊相連: 無 loop & 無重邊

  • 至少兩邊相連: multiplicity 2\ge 2,稱 GG多重圖(multigraph)

\rightarrow 往後章節在未特別指定下,一個 graph 視為 undirected simple graph!

Define Walk, Trail and Path

GG = (VV, EE): undirected graph, PP: v0v_0 = x , e1e_1, v1v_1, e2e_2, v2v_2, ..., ene_n, vnv_n = y , v0v_0, ..., vnVv_n \in V, e1e_1, ..., enEe_n \in E, 稱 PPx-y 路(walk)

  • PP 不含重複點,稱 PP路徑(path)

  • PP 不含重複邊,稱 PP路線(trail)

    path \Rightarrow trail, but trail 不一定 \Rightarrow path

  • x == y: closed; x \ne y: open

    • closed path: 環路(cycle),規定至少含 3 邊,其中重複點不包括 xy

    • closed trail: 迴路(circuit),規定至少含 1 邊 \therefore loop is a circuit, not a cycle.

      cycle \Rightarrow circuit, but circuit 不一定 \Rightarrow cycle

Define Connected Graph

GG = (VV, EE): undirected graph, 若 GG任兩點(x\forall x, yVy \in V, xyx \ne y)皆有 path 相連,則稱 GG連通圖(connected graph),否則稱 GG不連通圖(disconnected graph)

GGdigraph 時,稱 GG(強)連通圖((strongly) connected graph)

Last updated

Was this helpful?