4-1. 一般生成函數

Define Generating Function

a0a_0, a1a_1, a2a_2, ... 為一實數數列,定義 AA(xx) = a0a_0 + a1xa_1 x + a2x2a_2 x^2 + ... = i=0aixi\displaystyle\sum_{i=0}^{\infty} a_i x^i 為該數列的生成函數(generating function, GF)

生成函數: 表達數列的方法

Formula of Generating Function

  • (11 + xx)n^n = (n0)\dbinom{n}{0} + (n1)x\dbinom{n}{1} x + (n2)x2\dbinom{n}{2} x^2 + ... + (nn)xn\dbinom{n}{n} x^n = i=0n(ni)xi\displaystyle\sum_{i=0}^n \dbinom{n}{i} x^i

  • 11x\dfrac{1}{1 - x} = 11 + xx + x2x^2 + ... = i=0xi\displaystyle\sum_{i=0}^{\infty} x^i

  • 1xn+11x\dfrac{1 - x^{n + 1}}{1 - x} = 11 + xx + x2x^2 + ... + xnx^n = i=0nxi\displaystyle\sum_{i=0}^{n} x^i

Extended Binomial Coefficient

nRn \in RrNr \in N,定義 (nr)\dbinom{n}{r} = n(n1)...(nr+1)r!\dfrac{ n(n - 1)...(n - r + 1)}{r!},稱為廣義二項式係數(extended binomial coefficient)

  • (nr)\dbinom{-n}{r} = (1-1)r(n+r1r)^r \dbinom{n + r - 1}{r}

  • (11 + xx)n^{-n} = r=0(nr)xr\displaystyle\sum_{r=0}^{\infty} \dbinom{-n}{r} x^r = r=0\displaystyle\sum_{r=0}^{\infty}(1-1)r(n+r1r)xr^r \dbinom{n + r - 1}{r} x^r

    \Rightarrow (11 - xx)n^{-n} = r=0\displaystyle\sum_{r=0}^{\infty}(1-1)r(n+r1r)^r \dbinom{n + r - 1}{r}(x-x)r^r = r=0(n+r1r)xr\displaystyle\sum_{r=0}^{\infty} \dbinom{n + r - 1}{r} x^r

    (1±x1 \pm x)n^{-n} = 1(1±x)n\dfrac{1}{(1 \pm x)^n} = (11±x\dfrac{1}{1 \pm x})n^n

Last updated

Was this helpful?