2-7. 計數問題

Theorem of Finite Set Relation

A|A| = mm < \infty, B|B| = nn < \infty,

  • ff: ABA \rightarrow B 1-1 mn\Rightarrow m \le n

  • ff: ABA \rightarrow B onto mn\Rightarrow m \ge n

  • ff: ABA \rightarrow B 1-1 且 onto m\Rightarrow m = nn

Define Cardinality

AA, BB: sets, 若 f\exists f: ABA \rightarrow B1-1 且 onto, 稱 AABB 具相同之基數(cardinality): A|A| = B|B|, 記作 ABA \sim B

\sim 為一等價關係

Define Finite and Infinite Set

AA: set, AA = \emptysetnZ+\exists n \in Z^+ s.t. AA \sim { 11, 22, ..., nn }, 稱 AA有限集(finite set) A\leftrightarrow A \ne \emptysetnZ+\nexists n \in Z^+ s.t. AA \sim { 11, 22, ..., nn } 稱 AA無限集(infinite set)

Define Countable and Uncountable Set

AA: set, AA 為有限集或 AZ+A \sim Z^+, 則稱 AA可數集(countable set) A\leftrightarrow A 為無限集且 AZ+A \nsim Z^+, 稱 AA不可數集(uncountable set)

Z+Z^+無限可數集(countably infinite set)

Theorem of Z is countable

ZZ 為可數集

proof:

定義 ff: ZZ+Z \rightarrow Z^+ by ff(xx) ={1, if x=02x, if x>02x+1, if x<0= \begin{cases} 1 &\text{, if } x = 0 \\ 2x &\text{, if } x > 0 \\ -2x + 1 &\text{, if } x < 0 \end{cases}

xx

...

-2

-1

0

1

2

...

ff(xx)

...

5

3

1

2

4

...

f\Rightarrow f(xx): 1-1 且 onto ZZ+\therefore Z \sim Z^+

Properties of Countable and Uncountable Set

  • 有限集 \Rightarrow 可數集

    可數集 \nRightarrow 有限集, ex.Z+^{ex.} Z^+

  • 不可數集 \Rightarrow 無限集

    無限集 \nRightarrow 不可數集, ex.Z+^{ex.} Z^+

  • AA, BB: sets, ABA \subseteq B

    • BB is countable A\Rightarrow A is countable.

    • BB is uncountable A\Rightarrow A is uncountable.

Corollary of Countably Infinite Set

AA: infinite set, f\exists f: AZ+A \rightarrow Z^+ 1-1 A\Rightarrow A is countable.

Theorem of Positive Z Product

Countable

Z+×Z+Z^+ \times Z^+ is countable.

proof:

定義 ff: Z+×Z+Z+Z^+ \times Z^+ \rightarrow Z^+ by ff(aa, bb) = 2a3b2^a 3^b \because 質因數分解必唯一 f\therefore f is 1-1 By Corollary of Countably Infinite Set, ff: Z+×Z+Z^+ \times Z^+ is countable.

Same Cardinality with Positive Z

Z+×Z+Z+Z^+ \times Z^+ \sim Z^+

proof:

定義 ff: Z+×Z+Z+Z^+ \times Z^+ \rightarrow Z^+ by ff(ii, jj) = (k=1i+j2k\displaystyle\sum_{k=1}^{i + j - 2} k) + jj = (i+j2)(i+j1)2\dfrac{(i + j - 2)(i + j - 1)}{2} + jj \Rightarrow 2 維陣列 \rightarrow 1 維陣列,依對角線做編號

(ii, jj)

(1, 1)

(2, 1)

(1, 2)

(3, 1)

(2, 2)

(1, 3)

...

ff(ii, jj)

1

2

3

4

5

6

...

f\Rightarrow f: 1-1 且 onto Z+×Z+Z+\therefore Z^+ \times Z^+ \sim Z^+

Corollary of Positive Z Product

  • AA, BB: countable A×B\Rightarrow A \times B: countable.

  • AiA_i is countable, i\forall i = 11, 22, ... i=1Ai\Rightarrow \displaystyle\bigcup_{i=1}^\infty A_i is countable.

  • Q+Q^+ = { qp\dfrac{q}{p} | pp, qZ+q \in Z^+ } X\subseteq X = { qp\dfrac{q}{p} | pp, qZ+q \in Z^+, 不考慮約分 } \sim { (pp, qq) | pp, qZ+q \in Z^+ } = Z+×Z+Z+Z^+ \times Z^+ \sim Z^+ is countable Q+\Rightarrow Q^+ is countable.

    所有正有理數所成集合 Q+Q^+ 為可數集

  • QQ = Q+QQ^+ \cup Q^- \cup { 00 } is countable.

    所有有理數所成集合 QQ 為可數集

Theorem of Zero-one Interval

[00, 11] 為不可數集

proof:

設 [00, 11] is countable Z+\Rightarrow Z^+ \sim [00, 11] f\Rightarrow \exists f: Z+Z^+ \rightarrow [00, 11] 1-1 且 ontoff(ii) = rir_i = 0.ai1ai2...0.{a_{i1}}{a_{i2}}..., i\forall i = 11, 22, ...

r1r_1 = 0.a11a12a130.{\color{red}{a_{11}}}{a_{12}}{a_{13}} \ldots r2r_2 = 0.a21a22a230.{a_{21}}{\color{red}{a_{22}}}{a_{23}} \ldots r1r_1 = 0.a31a32a330.{a_{31}}{a_{32}}{\color{red}{a_{33}}} \ldots   \; \vdots \qquad \, \enspace \vdots \quad \vdots \quad \vdots \, \ddots

XX = 0.x1x2x30.{x_1}{x_2}{x_3} \ldots, 其中 xi={5, if aii=44, if aii4x_i = \begin{cases} 5 &\text{, if } {\color{red}{a_{ii}}} = 4 \\ 4 &\text{, if } {\color{red}{a_{ii}}} \ne 4 \end{cases}, i\forall i = 11, 22, ..., 則 XX \in [00, 11] 但 XfX \ne f(ii), i\forall i = 11, 22, ... \Rightarrowffonto 矛盾 \therefore [00, 11] is uncountable.

Theorem of R and Zero-one Interval

RR 為不可數集且 [00, 11] R\sim R

proof:

\rightarrow漸近線 定義 ff: [00, 11] \rightarrow [-π2\dfrac{\pi}{2}, π2\dfrac{\pi}{2}] 為 ff(xx) = πx\pi{x} - π2\dfrac{\pi}{2}

[-π2\dfrac{\pi}{2}, π2\dfrac{\pi}{2}]: yy = tanx\tan{x}

又定義 gg: [-π2\dfrac{\pi}{2}, π2\dfrac{\pi}{2}] R\rightarrow Rgg(xx) = tanx\tan{x}, 則 ff, gg: 1-1 且 ontohh: [00, 11] R\rightarrow Rhh(xx) = (gg \tiny{\circ} ff)(xx) = tan\tan(πx\pi{x} - π2\dfrac{\pi}{2}), 則 hh 亦為 1-1 且 onto \therefore [00, 11] R\sim R

Comparison of All Numbers

  • AA is uncountable, BB is countable A\Rightarrow A - BB is uncountable.

    A\because A(uncountable) = (AA - BB) \cup (ABA \cap B)(countable) A\therefore A - BB is uncountable.

  • Q\overline{Q} = RR(uncountable) - QQ(countable) \Rightarrow uncountable

  • CR2RC \sim R^2 \sim R \Rightarrow uncountable

    CR2C \sim R^2: aa + bibi \Rightarrow (aa, bb)

Z+\rightarrow \Large{|Z^+|} = Z\Large{|Z|} = Q\Large{|Q|} <\Large{\color{red}{<}} Q\Large{|\overline{Q}|} = R\Large{|R|} = C\Large{|C|}

  • countable \leftarrow <\Large{\color{red}{<}} \rightarrow uncountable

  • P(Z+)|P(Z^+)| = R|R|

Last updated

Was this helpful?